Abstract

Nano-biotechnology has grown rapidly and become an integral part of modern disease diagnosis and treatment. The aim of this survey was to evaluate the anticancer activity of synthesized selenium nanoparticles (Se-NPs) against breast cancer cells (MCF-7). The prepared Se-NPs were examined by ultraviolet-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM), and energy dispersive spectroscopy (EDX). Antioxidant activity of Se-NPs property was studied by radical scavenging (DPPH) assay. The in-vitro cytotoxicity of Se-NPs was evaluated by MTT assay. In addition; the biological assessment (antioxidant and cytotoxicity) of synthesized Se-NPs was examined via molecular docking simulations. Synthesis of Se-NPs was characterized by several studies such as UV-absorbance, showing peak values in the range of 268 nm. Nanoparticle sizes of the nanoparticles are confirmed by dynamic light scattering analysis, indicating that average size is about 203 nm. The quantity of selenium in Se-NPs is 90.15% by weight, as confirmed by EDX. Synthesized Se-NPs have anti-proliferative effects on MCF-7 cell lines. Cytotoxicity and apoptotic potential assays exhibited a dose-dependent effect against MCF-7 cells using an MTT assay. Like anti-cancer activity, anti-oxidant activity of Se-NPs was dose-dependent. Findings showed that the Se-NPs complexes have the highest inhibitory effect against cytotoxic and antioxidant receptors. Results of this study demonstrated that Se-NPs had strong potential to scavenge free radicals and are cytotoxic against the MCF-7 cancer cell line.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.