Abstract
We explore numerically relay synchronization of wave structures in a heterogeneous three-layer network of coupled two-dimensional (2D) lattices of continuous-time systems. Remote layers, which are not directly connected but interact via a relay layer, consist of coupled van der Pol oscillators, while the middle layer is described by a lattice of interacting FitzHugh-Nagumo neurons. We show for the first time that already for weak inter-layer coupling, anti-phase relay synchronization of target wave patterns occurs in the considered network. This is a novel effect which can be observed in multiplex networks of interacting 2D lattices of oscillatory systems. Our numerical studies indicate that strong inter-layer coupling leads to in-phase synchronization of spatio-coherent structures in the network layers. We also analyze the impact of inter-layer coupling ranges in the relay and the remote layers on the relay synchronization effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.