Abstract

The purpose of this study was to target ovarian cancer cells by coupling paclitaxel (Tx)-loaded nanoparticles (NPs-Tx) to antibodies against KDEL sequence, able to recognize GRP94 and GRP78 that are located at cell surface in cancer cells whereas they are in the endoplasmic reticulum in healthy cells. Tx-loaded poly (DL-lactic acid) nanoparticles coated with anti-KDEL antibodies (NPs-Tx-KDEL) were successfully prepared and characterized. Interaction between tumor cells and NPs-Tx or NPs-Tx-KDEL was observed by microscopy with fluorescently labeled NPs and the efficacy of the different formulations was compared by a viability assay. Particles functionalized with monoclonal antibodies (mAb) showed a higher binding to the cells even though the internalization rate appeared limited. The effect of NPs-Tx-KDEL on cell viability (proliferation) was compared to Tx, NPs, NPs-Tx, anti-KDEL mAb or anti-KDEL mAb in combination with NPs-Tx in Bg-1 ovarian cell line. Our data indicate that NPs-Tx-KDEL significantly increase sensitivity of Bg-1 cells to Tx compared to other treatments. This study confirms the interest of anti-cancer therapy by targeting cell surface GRP78 and GRP94 on cancer cells, and demonstrates the efficiency of coupling KDEL antibodies to NPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.