Abstract

The untreated systemic chronic inflammation leads to autoimmune diseases, hyperglycemia, cardiovascular diseases, type 2 diabetes, hypertension, osteoporosis, and so on. Phytochemicals effectively inhibitthe inflammation, and numerous studies have proved that the phytocomponents possessanti-inflammatory property via inhibiting the cyclooxygenase and lipoxygenase signaling pathways. Rhaponticin is one such phytochemical obtained from the perennial plant Rheum rhaponticum L. belonging to Polygonaceae family. We assessed the anti-inflammatory potency of rhaponticin in endothelial cells induced with lipopolysaccharides (LPS). Four different endothelial cells induced with LPS were treated with rhaponticin and assessed for the nitric oxide generation. The cytotoxic potency of rhaponticin was evaluated in endothelial cells using the3-(4,5-dimethylthizaol-2yl)-2,5-diphenyl tetrazolium bromide assay. The tumor necrosis factor-α (TNF-α) synthesis was quantified using the commercially available assay kit. The inflammatory signaling protein gene expression of TNF-α, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), and interleukin-1β (IL-1β) was analyzed with quantitative polymerase chain reaction (PCR) analysis. The gene expression of NADPH oxidase (NOX) cytoplasmic catalytic subunits gp91phox , p47phox , and p22phox was assessed with real-time PCR analysis. Finally, to confirm the anti-inflammatory potency of rhaponticin, the nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (MAPK) signaling protein expressionwas analyzed with immunoblotting analysis. Rhaponticin treatment significantly decreased the levels of nitric oxide and TNF-α synthesis in LPS-induced endothelial cells. It significantly decreased the gene expression of inflammatory proteins and NOX signaling protein. The protein expression of NFκB and MAPK signaling proteins was drastically decreased in rhaponticin-treated endothelial cells induced with LPS. Overall, our results confirm that rhaponticin effectively inhibited the inflammation triggered by LPS in endothelial cells via downregulating iNOS, COX2, and NFκB and MAPK signaling pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call