Abstract
Previous clinical studies have reported the clinical effectiveness of non‑animal stabilized hyaluronic acid (NASHA) and adipose‑derived mesenchymal stromal/stem cells (MSC) in the treatment of knee osteoarthritis (OA). Unlike MSC secreted mediators, invitro anti‑inflammatory effects of NASHA have not been evaluated. We aimed to evaluate and compare the anti‑inflammatory effect of NASHA and MSC conditioned medium (stem cell‑conditioned medium; SC‑CM), in an explant‑based coculture model of OA. Cartilage and synovial membrane from seven patients undergoing total knee arthroplasty were used to create a coculture system. Recombinant IL‑1β was added to the cocultures to induce inflammation. Four experimental groups were generated: i)Basal; ii)IL‑1β; iii)NASHA (NASHA+IL‑1β); and iv)SC‑CM (SC‑CM+IL‑1β). Glycosaminoglycans (GAG) released in the culture medium and of nitric oxide (NO) production were quantified. Gene expression in cartilage and synovium of IL‑1β, matrix metallopeptidase13 (MMP13), ADAM metallopeptidase with thrombospondin type1 motif5 (ADAMTS5) and tissue inhibitor of metalloproteinases1 (TIMP1) was measured by reverse transcription‑quantitative PCR. Media GAG concentration was decreased in cocultures with NASHA and SC‑CM (48h, P<0.05; 72h, P<0.01) compared with IL‑1β. Production of NO was significantly lower only in SC‑CM after72h (P<0.01). In cartilage, SC‑CM inhibited the expression of IL‑1β, MMP13 and ADAMTS5, while NASHA had this effect only in MMP13 and ADAMTS5. In synovium, SC‑CM decreased the expression level of MMP13 and ADAMTS5, while NASHA only decreased ADAMTS5 expression. Both NASHA and SC‑CM increased TIMP1 expression in cartilage and synovium. Treatments with NASHA and SC‑CM were shown to be a therapeutic option that may help counteract the catabolism produced by the inflammatory state in knee OA. The anti‑inflammatory mediators produced by MSC promote a lower expression of inflammatory targets in our study model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.