Abstract
Intracranial aneurysms (IAs) are common cerebrovascular diseases that carry a high mortality rate, and the mechanisms that contribute to IA formation and rupture have not been elucidated. ADAMTS-5 (ADAM Metallopeptidase with Thrombospondin Type 1 Motif 5) is a secreted proteinase involved in matrix degradation and ECM (extracellular matrix) remodeling processes, and we hypothesized that the dysregulation of ADAMTS-5 could play a role in the pathophysiology of IA. Immunofluorescence revealed that the ADAMTS-5 levels were decreased in human and murine IA samples. The administration of recombinant protein ADAMTS-5 significantly reduced the incidence of aneurysm rupture in the experimental model of IA. IA artery tissue was collected and utilized for histology, immunostaining, and specific gene expression analysis. Additionally, the IA arteries in ADAMTS-5-administered mice showed reduced elastic fiber destruction, proteoglycan accumulation, macrophage infiltration, inflammatory response, and apoptosis. To further verify the role of ADAMTS-5 in cerebral vessels, a specific ADAMTS-5 inhibitor was used on another model animal, zebrafish, and intracranial hemorrhage was observed in zebrafish embryos. In conclusion, our findings indicate that ADAMTS-5 is downregulated in human IA, and compensatory ADAMTS-5 administration inhibits IA development and rupture with potentially important implications for treating this cerebrovascular disease.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.