Abstract

Background: 4-Aminoquinoline derivatives possess various potential biological properties.The introduction of additional piperazine heterocyclic pharmacophoric moiety tends to haveprofound impact in increasing the activity. The present work was undertaken to investigate thein-vitro and in-vivo anti-inflammatory activity as well as the peripheral and central analgesicactivities of compound 1-(4-(7-chloroquinoline-4-yl)piperazin-1-yl)-2-(4-phenylpiperazin-1-yl)ethanone (5) in experimental models. Methods: The percentage inhibition of the lipopolysaccharide induced NO release of 7-chloro-4-(piperazin-1-yl)quinoline derivatives 1-9 was determined in RAW 264.7 murine macrophagemodel. Western blot analysis was performed to evaluate the effect of compound 5 on proteinexpression of inducible nitric oxide synthase (iNOS). Gene expression of inflammatory markerswas evaluated using real-time polymerase chain reaction. The peripheral and central analgesicactivities of compound 5 were evaluated in mice using writhing and hot-plate tests, respectively.Anti-inflammatory activity was assessed using carrageenan-induced paw edema assay in miceand serum NO and COX-2 levels were measured. Results: Compound 5 demonstrated the highest NO inhibitory activity that was accompaniedby inhibition of iNOS protein expression and decreased gene expression levels of inflammatorymarkers. It revealed a potential peripheral analgesic effect through inhibition of abdominalwrithing in mice treated with doses of 15 and 30 mg/kg and its effect was comparable to diclofenacsodium. Compound 5 possessed an analgesic activity starting from 15 min post administrationand reached its peak at 45 min which was significantly higher than that of tramadol hydrochloridesuggesting its potential as central analgesic agent. It also showed percentage of inhibition ofedema of 34, 50 and 64% at 1, 2, and 3 h respectively, post carrageenan challenge together with asignificant decrease in serum NO and COX-2 levels. Conclusion: The remarkable anti-inflammatory and analgesic activities of compound 5 couldbe attributed to the advantageous introduction of the heterocyclic 7-chloro-4-(piperazin1-yl)quinoline scaffold incorporated with N-phenylpiperzine functional groups linked together withthe ethanone pharmacophoric chain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call