Abstract

Although natural products are essential sources of small-molecule antitumor drugs, some can exert substantial toxicities, limiting their clinical utility. Anthraquinone-fused enediyne natural products are remarkably potent antitumor drug candidates, and uncialamycin and tiancimycin (TNM) A are under development as antibody-drug conjugates. Herein, a novel drug delivery system is introduced for TNM A using anti-human epidermal growth factor receptor 2 (HER2) immunoliposomes (ILs). Trastuzumab-coated TNM A-loaded ILs (HER2-TNM A-ILs) is engineered with an average particle size of 182.8±2.1nm and a zeta potential of 1.75±0.12mV. Compared with liposomes lacking trastuzumab, HER2-TNM A-ILs exhibited selective toxicity against HER2-positive KPL-4 and SKBR3 cells. Coumarin-6, a fluorescent TNM A surrogate, is encapsulated within anti-HER2 ILs; the resultant ILs have enhanced cellular uptake in KPL-4 and SKBR3 cells when compared with control liposomes. Furthermore, ILs loaded with more Cy5.5 accumulated in KPL-4 mouse tumors. A single HER2-TNM A-IL dose (0.02mgkg-1) suppressed the growth of HER2-positive KPL-4 mouse tumors without apparent toxicity. This study not only provides a straightforward method for the effective delivery of TNM A against HER2-positive breast tumors but also underscores the potential of IL-based drug delivery systems when employing highly potent cytotoxins as payloads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.