Abstract

As part of a longstanding collaborative project within the Bay Area Breast Cancer Translational Research Program (UCSF Breast SPORE), we have continued to use nude mouse human breast cancer xenograft models to test our hypothesis that more effective and less toxic delivery of potent anticancer drugs can be achieved using immunoliposomes (ILs), consisting of receptor-internalizing monoclonal antibody fragments covalently linked to drug-encapsulated long-circulating liposomes (Ls). Our lead agent, anti-HER2 immunoliposomes containing doxorubicin (anti-HER2 ILs-dox), now approaches clinical testing after preclinical evaluation and optimization against multiple breast cancer xenograft models expressing high (+3), moderate (+2), or low (+1) levels of the HER2/ErbB2 growth factor receptor. The enhanced in vivo therapeutic index achieved by anti-HER2 ILs-dox over immunoliposomes containing doxorubicin (+/- Herceptin/trastuzumab) or free doxorubicin was found to be due to the greater intracellular drug delivery achieved by receptor internalizing ILs. A new bioassay measuring HER2 receptor internalization by ILs and performed ex vivo on breast tumor cells or explants appears capable of identifying a subset of HER2 overexpressing breast tumors that may not respond to some HER2 receptor-targeted therapeutics. Other standard breast cancer chemotherapeutics (e.g. vinorelbine, camptothecins) and investigational agents (e.g. ellipticine, hydroxamic acid inhibitors of histone deacetylase) have been similarly encapsulated and evaluated against these tumor xenograft models, all showing enhanced therapeutic efficacy by the targeted ILs > nontargeted Ls > free drug. Likewise, the modular versatility of this drug delivery platform has been proven by linking drug-encapsulated Ls with an epidermal growth factor receptor (EGFR)/HER1 targeting/internalizing antibody and demonstrating the significantly improved efficacy and specificity of anti-EGFR ILs against EGFR overexpressing human breast cancer xenografts.

Highlights

  • The remarkable generation of scores of increasingly sophisticated mouse models of mammary cancer over the past two decades has provided tremendous insights into molecular derangements that can lead to cancer

  • We report that somatic mutations of p53 in mouse mammary epithelial cells lead to ERα-positive and ERαnegative tumors. p53 inactivation in pre-pubertal/pubertal mice, but not in adult mice, leads to the development of ERα-positive tumors, suggesting that developmental stages influence the availability of ERα-positive tumor origin cells

  • Genetic alterations commonly observed in human breast cancer including c-myc amplification and Her2/Neu/erbB2 activation were seen in these mouse tumors

Read more

Summary

Mouse models of human breast cancer: evolution or convolution?

Transgenic Oncogenesis Group, Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, Maryland, USA. The remarkable generation of scores of increasingly sophisticated mouse models of mammary cancer over the past two decades has provided tremendous insights into molecular derangements that can lead to cancer. The relationships of these models to human breast cancer, remain problematic. P53 inactivation in pre-pubertal/pubertal mice, but not in adult mice, leads to the development of ERα-positive tumors, suggesting that developmental stages influence the availability of ERα-positive tumor origin cells. These tumors have a high rate of metastasis that is independent of tumor latency. Since it is feasible to isolate ERα-positive epithelial cells from normal mammary glands and tumors, molecular mechanisms underlying ERα-positive and ERα-negative mammary carcinogenesis can be systematically addressed using this model

Mouse models for BRCA1-associated breast cancer
Genetic manipulation of the mammary gland by transplantation
The Mutant Mouse Regional Resource Center Program
11 Mammary pathology of the genetically engineered mouse
D Dugger
15 Role of animal models in oncology drug discovery
18 Clinical breast cancer and estrogen
19 Pregnancy levels of estrogen prevents breast cancer
21 The ErbB receptor tyrosine kinases and their roles in cancer
22 Predicting breast cancer behavior by microarray analysis
24 The comparative genetics and genomics of cancer: of mice and men
23 The molecular biology of mammary intraepithelial neoplasia outgrowths
28 Transgenic models are predictive: the herceptin and flavopiridol experience
31 Role of differentiation in carcinogenesis and cancer prevention
30 Genetically engineered mouse models of human breast cancer
34 Hormonal interactions during mammary gland development
35 Function of LEF1 in early mammary development
40 Imaging mouse models of breast cancer with positron emission tomography
42 Ultrasound imaging of tumor perfusion
D Medina
47 In situ to invasive carcinoma transition: escape or release
48 Regulation of human mammary stem cells
50 Stem cells in normal breast development and breast cancer
McKenzie
57 Genomic approaches to drug target discovery using mouse models
58 Target discovery in the postgenomic era
60 From gene expression patterns to antibody diagnostics
Findings
A Korman
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call