Abstract

We study the Lorentzian analogues of the squashed 3-sphere, namely, (2+1)-dimensional anti-de Sitter space squashed or stretched along fibres that are either spacelike or timelike. The causal structure and the property of being an Einstein–Weyl space depend critically on whether we squash or stretch. We argue that squashing and stretching completely destroy the conformal boundary of the unsquashed spacetime. As a physical application we observe that the near horizon geometry of the extremal Kerr black hole, at constant Boyer–Lindquist latitude, is anti-de Sitter space squashed along compactified spacelike fibres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.