Abstract

The geometry of the spinning black holes of standard Einstein theory in 2+1 dimensions, with a negative cosmological constant and without couplings to matter, is analyzed in detail. It is shown that the black hole arises from identifications of points of anti-de Sitter space by a discrete subgroup of $SO(2,2)$. The generic black hole is a smooth manifold in the metric sense. The surface $r=0$ is not a curvature singularity but, rather, a singularity in the causal structure. Continuing past it would introduce closed timelike lines. However, simple examples show the regularity of the metric at $r=0$ to be unstable: couplings to matter bring in a curvature singularity there. Kruskal coordinates and Penrose diagrams are exhibited. Special attention is given to the limiting cases of (i) the spinless hole of zero mass, which differs from anti-de Sitter space and plays the role of the vacuum, and (ii) the spinning hole of maximal angular momentum . A thorough classification of the elements of the Lie algebra of $SO(2,2)$ is given in an Appendix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.