Abstract

The current study evaluated the anti-cancer properties of bio-functionalized silver nanoparticles fabricated by Juniperus chinensis leaf extracts. The nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy, UV–visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, dynamic light scattering, Zeta potential and X-ray spectroscopy. Further, this study elucidated the cellular and molecular mechanisms of nanoparticles for anti-proliferative and apoptotic effects on human lung cancer cells (A549) and compared them with commercial drug cisplatin. The size of the spherical nanoparticle was 12.96 nm with negative zeta potential. Up-regulation of caspase 3,9 and p53, Annexin V-FITC/PI, DAPI staining, and ROS production indicated the remarkable apoptotic effect of AgNPs compared to cisplatin. Moreover, down-regulation of MMP2/MMP9 scratch and matrigel assays revealed anti-metastatic properties of AgNPs. Cell cycle analysis and downregulation of cyclin D1 indicated cancer cell cessation in the G0/G1 phase. Overall, the results revealed that the green-synthetized AgNPs had anti-metastasis and anti-proliferation effects on lung cancer cells in comparison to cisplatin with lower side effects on the normal cell line.

Highlights

  • Silver nanoparticles (AgNPs) are one of the popular nanomaterials that have been progressively becoming a section of our daily lives (Singh and Sahareen 2017)

  • Characterization of silver nanoparticles synthesized by Juniperus polycarpos Changes in the color of the solution containing Juniperus polycarpos extract were monitored after incubation at 37 °C for 24 h

  • The results showed the efficient synthesis of AgNPs using Juniperus polycarpos extract as confirmed by SEM, TEM, X-ray diffraction (XRD), UV–vis, Energy-Dispersive Spectroscopy (EDS) and Fourier-transform infrared (FTIR) techniques

Read more

Summary

Introduction

Silver nanoparticles (AgNPs) are one of the popular nanomaterials that have been progressively becoming a section of our daily lives (Singh and Sahareen 2017). Thanks to their marvelous and unparalleled nano-related features, AgNPs have been extensively applied in different. The biological results showed anti-cancerous and anti-proliferative activity of biologically synthesized silver NPs on lung cancer A549 cells. Their non-cytotoxicity can be assigned to their ability to arrest the cell cycle at the G1 phase (Annu et al 2018). It was confirmed that AgNPs synthesized by the Juniperus chinensis leaf showed the potent anticancer effect on the human adenocarcinoma gastric (AGS) cell lines (Al-Dhafri and Ching 2019)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call