Abstract

Zanthoxylum schinifolium Sieb. et Zucc. (syn. Fagara schinifolia Engler) was studied for its potential anti-inflammatory properties. The hydrosol extract prepared from the Z. schinifolium branch was analyzed by gas chromatography/mass spectrometry. Here, five main chemical components were identified in the hydrosol of the branches of this shrub. The main chemical compounds in the branch inhibited both an Immunoglobulin E (IgE)-antigen complex and a dinitrophenyl-bovine serum albumin (DNP-BSA)-induced β-hexosaminidase release in a dose-dependent manner in RBL-2H3 mast cells, and at the tested concentrations did not show cytotoxicity to RBL-2H3 cells. Moreover, hydrosol obtained from the branch substantially inhibited a lipopolysaccharide (LPS) induced overproduction of intracellular active oxygen (ROS) and nitric oxide (NO). Consistently, the soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) proteins of SNAP23, syntaxin4, VAMP7, and VAMP8 were remarkably decreased through hydrosol treatment. Hydrosol suppressed the activation of SNARE proteins in DNP-BSA-stimulated RBL-2H3 cells and inhibited ROS and NO in LPS-stimulated RAW264.7 cells. Camphor and estragole are the main chemical components of hydrosol and downregulate the LPS-induced phosphorylation of the SNARE proteins. The hydrosol obtained from the branch of Z. schinifolium has therapeutic benefits for allergic inflammatory diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call