Abstract

Monitoring of low levels of chlorsulfuron in environmental water samples is important. Although several detection methods have been developed, they all have some drawbacks, such as being time-consuming, requiring expensive instruments and experienced operators, and consuming large volumes of organic solvents. There is an urgent need for a simple, rapid, and inexpensive detection method for chlorsulfuron. Herein, such a method was developed using anti-aggregation of gold nanoparticles (AuNPs) in the presence of acetamiprid in agricultural irrigation water samples. Aggregation of the AuNPs was induced by acetamiprid, and this produced a distinct color change from Bordeaux red to blue. However, the strong hydrogen bonding interaction between chlorsulfuron and acetamiprid could inhibit AuNP aggregation. The effect of chlorsulfuron on the anti-agglomeration behavior of AuNPs was monitored by ultraviolet–visiblespectroscopy (UV-Vis) and the naked eye over a concentration range 0.1–100 mg/L. The detection limit for chlorsulfuron was 0.025 mg/L (signal-to-noise ratio of three). This colorimetric method was successfully applied to the determination of chlorsulfuron in spiked tap water and agricultural irrigation water with satisfactory recoveries (76.3%–94.2%).

Highlights

  • Sulfonylurea pesticides, an efficient class of herbicides, are commonly used for weed control in many crops [1]

  • Several analytical methods have been developed for chlorsulfuron analysis, mainly using gas chromatography [4], gas chromatography coupled to mass spectrometry [5], high performance liquid chromatography [6,7], high performance liquid chromatography coupled to mass spectrometry [8], fluorescent chemosensors [9], capillary electrophoresis [10], and immunosensors [11]

  • These results indicated that aggregation of the AuNPs was induced by acetamiprid

Read more

Summary

Introduction

Sulfonylurea pesticides, an efficient class of herbicides, are commonly used for weed control in many crops [1]. Several analytical methods have been developed for chlorsulfuron analysis, mainly using gas chromatography [4], gas chromatography coupled to mass spectrometry [5], high performance liquid chromatography [6,7], high performance liquid chromatography coupled to mass spectrometry [8], fluorescent chemosensors [9], capillary electrophoresis [10], and immunosensors [11]. These analytical methods have high sensitivity and selectivity, they have some drawbacks, such as being time-consuming, requiring expensive instruments and experienced operators, and consuming large volumes of organic solvents [12,13]. A simple, rapid, inexpensive, and highly sensitive analytical method to determine trace amounts of chlorsulfuron in environmental water samples is required

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call