Abstract

To estimate a watershed's response to climate change, it is crucial to understand how human activities and climatic extremes have interacted over time. Over the last century, the Zarivar Lake watershed, Iran, has been subjected to various anthropogenic activates, including deforestation and inappropriate land-management practices alongside the implementation of conservation measures like check dams. To understand the effects of these changes on the magnitude of sediment, organic carbon (OC), and phosphorus supplies in a small sub-watershed connected to the lake over the last century, a lake sediment core was dated using 210Pbex and 137Cs as geochronometers. The average mass accumulation rate (MAR), organic carbon accumulation rates (OCAR), and particulate phosphorus accumulation rates (PPAR) of the sediment core were determined to be 6498 ± 2475, 205 ± 85, and 8.9 ± 3.3gm-2year-1, respectively. Between the late 1970s and early 1980s, accumulation rates were significantly higher than their averages at 7940 ± 3120, 220 ± 60, and 12.0 ± 2.8gm-2year-1 respectively. During this period, the watershed underwent extensive deforestation (12%) on steep slopes, coinciding with higher mean annual precipitations (more than double). Conversely, after 2009, when check dams were installed in the sub-watershed, the sediment load to the lake became negligible. The results of this research indicate that anthropogenic activities had a pronounced effect on MAR, OCAR, and PPAR, causing them to fluctuate from negligible amounts to values twice the averages over the last century, amplified by climatic factors. These results imply that implementing climate-smart watershed management strategies, such as constructing additional check dams and terraces, reinforcing restrictions on deforestation, and minimum tillage practices, can facilitate protection of lacustrine ecosystems under accelerating climate change conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.