Abstract

PurposeRodent and primate models are commonly used in glaucoma research; however, both have their limitations. The tree shrew (Tupaia belangeri) is an emerging animal model for glaucoma research owing in part to having a human-like optic nerve head anatomy, specifically a collagenous load-bearing lamina. However, the anterior segment anatomy and function have not been extensively studied in the tree shrew. Thus, the purpose of this study was to provide the first detailed examination of the anterior segment anatomy and aqueous outflow facility in the tree shrew.MethodsAqueous outflow dynamics were measured in five ostensibly normal eyes from three tree shrews using the iPerfusion system over a range of pressures. Gross histological assessment and immunohistochemistry were performed to characterize anterior segment anatomy and to localize several key molecules related to aqueous outflow.ResultsAnterior segment anatomy in tree shrews is similar to humans, demonstrating a scleral spur, a multilayered trabecular meshwork and a circular Schlemm's canal with a single lumen. Average outflow facility was 0.193 µL/min/mm Hg (95% confidence interval, 0.153–0.244), and was stable over time. Outflow facility was more similar between contralateral eyes (approximately 5% average difference) than between eyes of different animals. No significant dependence of outflow facility on time or pressure was detected (pressure–flow nonlinearity parameter of 0.01 (95% % confidence interval, −0.29 to 0.31 CI µL/min/mm Hg).ConclusionsThese studies lend support to the usefulness of the tree shrew as a novel animal model in anterior segment glaucoma and pharmacology research. The tree shrew's cost, load-bearing collagenous lamina cribrosa, and lack of washout or anterior chamber deepening provides a distinct experimental and anatomic advantage over the current rodent and nonhuman primate models used for translational research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.