Abstract

Early-life stress has long-term impacts on the structure and function of the anterior cingulate cortex (ACC), and raises the risk of adult neuropsychiatric disorders including social dysfunction. The underlying neural mechanisms, however, are still uncertain. Here, we show that, in female mice, maternal separation (MS) during the first three postnatal weeks results in social impairment accompaniedwith hypoactivity in pyramidal neurons (PNs) of the ACC. Activation of ACC PNs ameliorates MS-induced social impairment. Neuropeptide Hcrt, which encodes hypocretin (orexin), is the top down-regulated gene in the ACC of MS females. Activating ACC orexin terminals enhances the activity of ACC PNs and rescues the diminished sociability observed in MS females via an orexin receptor 2 (OxR2)-dependent mechanism. Our results suggest orexin signaling in the ACC is critical in mediating early-life stress-induced social impairment in females.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.