Abstract

Rhodotorulic acid produced by Rhodotorula glutinis strains improved the biological control of blue rot caused by Penicillium expansum in harvested apples. The production of the siderophore was closely associated with the iron concentration in the medium. Thus, very low additions of the metal reduced the siderophore production considerably. The antagonistic effect of R. glutinis and rhodotorulic acid was studied by using in vitro and in vivo assays. In the in vitro assays, rhodotorulic acid reduced the growth of P. expansum, whereas the chelate (rhodotorulic acid plus iron) did not. Siderophore antagonism was then related to competition for iron. In biocontrol assays on apple wounds, the blue mold was more effectively controlled by the antagonistic agent plus siderophore than by the antagonistic agent alone. The disease incidence (DI: percentage of treated wounds that developed rot) was 34% when apples were protected by R. glutinis alone, whereas it was 6% when the fruits were protected by R. glutinis plus rhodotorulic acid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call