Abstract

Quantitative structure–property relationship (QSPR) studies based on ant colony optimization (ACO) were carried out for the prediction of λmax of 9,10-anthraquinone derivatives. ACO is a meta-heuristic algorithm, which is derived from the observation of real ants and proposed to feature selection. After optimization of 3D geometry of structures by the semi-empirical quantum-chemical calculation at AM1 level, different descriptors were calculated by the HyperChem and Dragon softwares (1514 descriptors). A major problem of QSPR is the high dimensionality of the descriptor space; therefore, descriptor selection is the most important step. In this paper, an ACO algorithm was used to select the best descriptors. Then selected descriptors were applied for model development using multiple linear regression. The average absolute relative deviation and correlation coefficient for the calibration set were obtained as 3.3% and 0.9591, respectively, while the average absolute relative deviation and correlation coefficient for the prediction set were obtained as 5.0% and 0.9526, respectively. The results showed that the applied procedure is suitable for prediction of λmax of 9,10-anthraquinone derivatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.