Abstract

The paper tackles recent developments in the field of social behaviours of insects and swarm intelligence – “stigmergy”. Specifically, this paper aims to explore the paradigm of ant colony optimization from two main perspectives – economic and biological – so that we can attain a clear view of the genomic bases that allow ants to function as complex biological navigation systems. Such systems translate nowadays into metaheuristic algorithms whose purpose is to solve extremely difficult combinatorial optimization problems. The design of these algorithms draws inspiration from the foraging behaviour of real ants. In the case study, an example of using an ant colony optimization algorithm in order to solve a routing problem shows us how only two iterations and two ants were enough to reveal the shortest path, taking into consideration the amount of pheromones emitted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.