Abstract
In a paper in 1962, Guido Zappa asked whether a non-trivial coset of a Sylow p-subgroup of a finite group could contain only elements whose orders are powers of p, and also in that case, at least one element of order p. The first question was raised again recently in a 2014 paper by Daniel Goldstein and Robert Guralnick, when generalising an answer by John Thompson in 1967 to a similar question by L.J. Paige. In this paper we give a positive answer to both questions of Zappa, showing somewhat surprisingly that in a number of non-abelian finite simple groups (including PSL(3,4), PSU(5,2) and the Janko group J3), some non-trivial coset of a Sylow 5-subgroup (of order 5) contains only elements of order 5. Also Zappa's first question is studied in more detail. Various possibilities for the group and its Sylow p-subgroup P are eliminated, and it then follows that |P|≥5 and |P|≠8. It is an open question as to whether the order of the Sylow p-subgroup can be 7 or 9 or more.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.