Abstract

In Theorem 1, letting p be a prime, we prove: (1) If G=Sn is a symmetric group of degree n, then G contains two Sylow p-subgroups with trivial intersection iff (p, n) ∉ {(3, 3), (2, 2), (2, 4), (2, 8)}, and (2) If H=An is an alternating group of degree n, then H contains two Sylow p-subgroups with trivial intersection iff (p, n) ∉ {(3, 3), (2, 4)}. In Theorem 2, we argue that if G is a finite simple non-Abelian group and p is a prime, then G contains a pair of Sylow p-subgroups with trivial intersection. Also we present the corollary which says that if P is a Sylow subgroup of a finite simple non-Abelian group G, then ‖G‖>‖P‖2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call