Abstract

Hyp-1, a pathogenesis-related class 10 (PR-10) protein from St John's wort (Hypericum perforatum), was crystallized in complex with the fluorescent probe 8-anilino-1-naphthalene sulfonate (ANS). The highly pseudosymmetric crystal has 28 unique protein molecules arranged in columns with sevenfold translational noncrystallographic symmetry (tNCS) along c and modulated X-ray diffraction with intensity crests at l = 7n and l = 7n ± 3. The translational NCS is combined with pseudotetragonal rotational NCS. The crystal was a perfect tetartohedral twin, although detection of twinning was severely hindered by the pseudosymmetry. The structure determined at 2.4 Å resolution reveals that the Hyp-1 molecules (packed as β-sheet dimers) have three novel ligand-binding sites (two internal and one in a surface pocket), which was confirmed by solution studies. In addition to 60 Hyp-1-docked ligands, there are 29 interstitial ANS molecules distributed in a pattern that violates the arrangement of the protein molecules and is likely to be the generator of the structural modulation. In particular, whenever the stacked Hyp-1 molecules are found closer together there is an ANS molecule bridging them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call