Abstract
Procedures combining and summarising direct and indirect evidence from independent studies assessing the diagnostic accuracy of different tests for the same disease are referred to network meta-analysis. Network meta-analysis provides a unified inference framework and uses the data more efficiently. Nonetheless, handling the inherent correlation between sensitivity and specificity continues to be a statistical challenge. We developed an arm-based hierarchical model which expresses the logit transformed sensitivity and specificity as the sum of fixed effects for test, correlated study-effects to model the inherent correlation between sensitivity and specificity and a random error associated with various tests evaluated in a given study. We present the accuracy of 11 tests used to triage women with minor cervical lesions to detect cervical precancer. Finally, we compare the results with those from a contrast-based model which expresses the linear predictor as a contrast to a comparator test. The proposed arm-based model is more appealing than the contrast-based model since the former permits more straightforward interpretation of the parameters, makes use of all available data yielding shorter credible intervals, and models more natural variance-covariance matrix structures.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have