Abstract

BackgroundThe efficacy of long-lasting insecticidal nets (LLINs) in preventing malaria in Africa is threatened by insecticide resistance. Bioassays assessing 24-hour mortality post-LLIN exposure have established that resistance to the concentration of pyrethroids used in LLINs is widespread. However, although mosquitoes may no longer be rapidly killed by LLIN exposure, a delayed mortality effect has been shown to reduce the transmission potential of mosquitoes exposed to nets. This has been postulated to partially explain the continued efficacy of LLINs against pyrethroid-resistant populations. Burkina Faso is one of a number of countries with very high malaria burdens and pyrethroid-resistant vectors, where progress in controlling this disease has stagnated. We measured the impact of LLIN exposure on mosquito longevity in an area of the country with intense pyrethroid resistance to establish whether pyrethroid exposure was still shortening mosquito lifespan in this setting.MethodsWe quantified the immediate and delayed mortality effects of LLIN exposure using standard laboratory WHO cone tests, tube bioassays and experimental hut trials on Anopheles gambiae populations originating from the Cascades region of Burkina Faso using survival analysis and a Bayesian state-space model.ResultsFollowing single and multiple exposures to a PermaNet 2.0 LLIN only one of the four mosquito populations tested showed evidence of delayed mortality. No delayed mortality was seen in experimental hut studies using LLINs. A delayed mortality effect was only observed in WHO tube bioassays when deltamethrin concentration was increased above the standard diagnostic dose.ConclusionsAs mosquito pyrethroid-resistance increases in intensity, delayed effects from LLIN exposure are substantially reduced or absent. Given the rapid increase in resistance occurring in malaria vectors across Africa it is important to determine whether the failure of LLINs to shorten mosquito lifespan is now a widespread phenomenon as this will have important implications for the future of this pivotal malaria control tool.

Highlights

  • The efficacy of long-lasting insecticidal nets (LLINs) in preventing malaria in Africa is threatened by insecticide resistance

  • Long-lasting insecticidal nets (LLINs), which are the mainstay of many malaria control programmes in Africa, reduce contact between mosquitoes and humans by providing both a physical barrier and an insecticidal effect [1, 2]

  • After many years of prolonged use of pyrethroid insecticides to control agricultural pests and disease vectors, malaria vectors with increasing levels of pyrethroid resistance have emerged, and this has impacted on the ability of LLINs to control these mosquito populations [10, 11]

Read more

Summary

Introduction

The efficacy of long-lasting insecticidal nets (LLINs) in preventing malaria in Africa is threatened by insecticide resistance. Mosquitoes may no longer be rapidly killed by LLIN exposure, a delayed mortality effect has been shown to reduce the transmission potential of mosquitoes exposed to nets. This has been postulated to partially explain the continued efficacy of LLINs against pyrethroid-resistant populations. Long-lasting insecticidal nets (LLINs), which are the mainstay of many malaria control programmes in Africa, reduce contact between mosquitoes and humans by providing both a physical barrier and an insecticidal effect [1, 2]. The sometimes contradictory findings may be partially explained by the varying intensities of resistance in the study sites; a recent meta-analysis of bioassay studies and experimental hut trials data [17] shows that the community protection provided by nets reduces rapidly as resistance emerges whereas personal protection is only lost when resistance reaches much higher levels

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call