Abstract
Companies utilize highly accelerated limit testing (HALT) to ensure efficient product development by accelerating loading conditions in the qualification process. The aim of qualitative accelerated testing such as HALT is to properly identify early behavioral anomalies. To this end, this study utilizes machine learning techniques for detecting anomalies in servomotors in electronic products subjected to HALT. A case study was conducted using a programmable robot kit with 12 servomotors. HALT comprises five types of stress: thermal conditioning (cold and heat), rapid thermal change, vibration, and combined stresses. The anomalous behavior of a servomotor can be identified using a k-nearest neighbor algorithm and verified by inspection using the loading conditions and electrical responses. In addition, anomalous behaviors among servomotors and a control board are assessed using a Gaussian graph model approach. Changes in the Gaussian graph are assessed as anomaly scores using Kullback–Leibler divergence. The anomaly score increased earlier than the operating limit defined by inspection, i.e., the deviation from the initial position of the shaft. The machine learning algorithm successfully identified the failure precursor of the unit. The proposed approach of HALT with the machine learning algorithm supports prognostic health management of servomotors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Prognostics and Health Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.