Abstract

Diamond has the known highest thermal conductivity of around 2000 W m−1 K−1 and is, therefore, widely used for heat dissipation. In practical applications, synthetic diamond microparticles are usually assumed to have similar thermal conductivity to that of bulk diamond because the particle size is larger than the theoretical phonon mean free path, so that boundary scattering of heat-carrying phonons is absent. In this report, we find that the thermal conductivity of diamond microparticles anomalously depends on their sizes. The thermal conductivity of diamond microparticles increases from 400 to 2000 W m−1 K−1 with the size growing from 20 to 300 μm. We attribute the abnormally strong size effect to the long-range defects during the growth process based on analysis of point defects, dislocations, and thermal penetration depth dependence of thermal conductivity. Our results play a vital role in the design of diamond composites and in the improvement of the thermal conductivity of synthetic diamonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.