Abstract

We present the first theoretical study of transport properties of Weyl semimetals with point defects. Focusing on a class of time-reversal symmetric Weyl lattice models, we show that dilute lattice vacancies induce a finite density of quasilocalized states at and near the nodal energy, causing strong modifications to the low-energy spectrum. This generates novel transport effects, namely, (i)an oscillatory behavior of the dc conductivity with the charge carrier density in the absence of magnetic fields, and (ii) a plateau-shaped dissipative optical response for photon frequencies below the interband threshold, E_{F}≲ℏω≲2E_{F}. Our results provide a path to engineer unconventional quantum transport effects in Weyl semimetals by means of common point defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.