Abstract
Spin-orbit torque (SOT) is widely considered as an effective route to manipulate magnetic order in spintronic devices. The low power consumption and long endurance demands from future computer architectures urgently require a reduction of the critical SOT switching current density, jsw. However, except for searching for a SOT source with a high-spin Hall angle, few efficient mechanisms to reduce jsw have been proposed. In this work, we achieved an anomalous thermal-assisted (TA) jsw reduction in a Pt/Co/Tb heterostructure through engineering a ferrimagnetic Co/Tb interface. This jsw reduction tendency is demonstrated to be strongly dependent on the thickness of Tb, tTb. When tTb reaches an optimal point (3 nm), a 74 K temperature increase will reduce jsw by more than an order of magnitude (17 times). Comparison experiments and theoretical simulations indicate that this anomalous TA reduction behavior goes beyond the conventional SOT framework and originates from the temperature-sensitive ferrimagnetic interface. We further propose a multifunctional logic-in-memory device, where six different Boolean logic gates can be implemented, to demonstrate the application potential and energy efficiency of this TA SOT switching mechanism. Our work provides an effective alternative to reduce jsw in SOT devices and may inspire future spintronic memory, logic, and high-frequency devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.