Abstract

Shubnikov–de Haas (SdH) oscillations have long been used to measure the unequal spin-subband densities of inversion asymmetric two-dimensional (2D) systems. Our experiments and self-consistent numerical calculations for 2D GaAs hole systems indicate that, in general, these oscillations are not simply related to the population of spin-split subbands at zero-magnetic-field. The SdH oscillations depend sensitively on the crystallographic growth directions of a semiconductor quantum well. Our quantum mechanical analysis reveals the inapplicability of conventional Bohr–Sommerfeld quantization for systems with spin–orbit interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.