Abstract
Coding metasurfaces, composed of an array of coding particles with discrete phase responses, are encoded with predesigned coding sequences to manipulate wavefronts of electromagnetic (EM) waves and realize novel functionalities such as anomalous beam deflection, broadband diffusion, and polarization conversion. Such a new concept can be viewed as a bridge linking metamaterial and digital codes, yielding the investigation of metamaterials from a digital perspective and eventually the realization of real-time control of EM waves. Here, we propose and experimentally demonstrate a transmission-type coding metasurface to bend normally incident terahertz beams in anomalous directions and generate nondiffractive Bessel beams in normal and oblique directions. To overcome the larger reflection and strong Fabry–Perot resonance that usually originate from a thick silicon substrate, a free-standing design is presented for the coding particle, which is formed by stacking three metallic layers with four polyimide space...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.