Abstract

Surface acoustic waves are propagated toward the edge of an anisotropic elastic medium (a silicon crystal), which supports leaky waves with a high degree of localization at the tip of the edge. At an angle of incidence corresponding to phase matching with this leaky wedge wave, a sharp peak in the reflection coefficient of the surface wave was found. This anomalous reflection is associated with efficient excitation of the leaky wedge wave. In laser ultrasound experiments, surface acoustic wave pulses were excited and their reflection from the edge of the sample and their partial conversion into leaky wedge wave pulses was observed by optical probe-beam deflection. The reflection scenario and the pulse shapes of the surface and wedge-localized guided waves, including the evolution of the acoustic pulse traveling along the edge, have been confirmed in detail by numerical simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call