Abstract

Let $M$ be a closed 3-manifold which admits an Anosov flow. In this paper we develop a technique for constructing partially hyperbolic representatives in many mapping classes of $M$. We apply this technique both in the setting of geodesic flows on closed hyperbolic surfaces and for Anosov flows which admit transverse tori. We emphasize the similarity of both constructions through the concept of $h$-transversality, a tool which allows us to compose different mapping classes while retaining partial hyperbolicity. In the case of the geodesic flow of a closed hyperbolic surface $S$ we build stably ergodic, partially hyperbolic diffeomorphisms whose mapping classes form a subgroup of the mapping class group $\mathcal{M}(T^1S)$ which is isomorphic to $\mathcal{M}(S)$. At the same time we show that the totality of mapping classes which can be realized by partially hyperbolic diffeomorphisms does not form a subgroup of $\mathcal{M}(T^1S)$. Finally, some of the examples on $T^1S$ are absolutely partially hyperbolic, stably ergodic and robustly non-dynamically coherent, disproving a conjecture by F. Rodriguez Hertz, J. Rodriguez Hertz and R. Ures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.