Abstract
The α,β,γ,δ-tetraphenylporphinatocobalt(II) complex is found to exist in two distinct, but interconvertible, polycrystalline forms. The one with a tetragonal crystal symmetry (species B) gives the EPR spectrum which has been attributed to the low-spin electronic configuration of Co(II) ion in an axial crystal field. The other form (species A) having a triclinic crystal symmetry shows no easily detectable EPR signal even at liquid helium temperature. Magnetic susceptibility and magnetization meaurements demonstrated that the complex is paramagnetic in both forms, but the species (A) is characterized by ferromagnetic exchange coupling, while the species (B) behaves as a normal paramagnet. The experimental susceptibility versus 1/ T curve can be reproduced quite well by using the Ising method. The g values thus obtained ( g | = 5.2, g ⊥ = 0) can not be explained by a low-spin electronic configuration, but are consistent with a high-spin ground state. Assigning a high-spin state to the species (A), the first such case in Co(II) porphine complexes, can not only explain the absence of EPR signal, but is also supported by the results of X-ray structural analyses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.