Abstract

We experimentally investigated the dipole layer formation at Al2O3/AlFxOy (x:y = 1:1 and 1:2.5) interfaces, which would be explicable by considering the anion density difference as the key parameter to determine the dipole direction at the dielectric interface with different anions. Molecular dynamics (MD) simulation of Al2O3/AlF3 demonstrates a preferential migration of O from Al2O3 to AlF3 compared with F to the opposite direction which suggests that anion migration due to the density difference could determine the direction of the dipole layer formed at this interface. In addition, charge separation due to the difference in the anion valences could have certain effect simultaneously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.