Abstract
Spatially resolved photoluminescence (PL) and electroluminescence (EL) imaging technologies play a crucial role in evaluating the performance and stability of photovoltaic devices. However, their application in perovskite devices presents unique challenges. In this study, we report a discrepancy between the electrical performance of perovskite solar modules (PSMs) and the EL images. Following the application of a reverse bias voltage, we observed an increase in EL brightness associated with prolonged carrier lifetime and transport length. Furthermore, cross-sectional Kelvin probe force microscopy identified a significant potential increase primarily at the electron-transport layer (ETL) side after reverse bias, suggesting the presence of defective ETL/perovskite interfaces with filled hole traps. To address this EL mismatch, we proposed a mild reverse current recovery method aimed at aligning EL images with the cell performance without compromising device efficiency. This approach effectively mitigates discrepancies, ensuring alignment between the device performance and EL imaging. Our study underscores that caution is required when utilizing EL imaging to monitor spatial homogeneity in PSMs for future industrial production.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.