Abstract
Electroluminescence (EL) imaging is a photovoltaic (PV) module characterization technique, which provides high accuracy in detecting defects and faults, such as cracks, broken cells interconnections, shunts, among many others; furthermore, the EL technique is used extensively due to a high level of detail and direct relationship to injected carrier density. However, this technique is commonly practiced only indoors—or outdoors from dusk to dawn—because the crystalline silicon luminescence signal is several orders of magnitude lower than sunlight. This limits the potential of such a powerful technique to be used in utility scale inspections, and therefore, the interest in the development of electrical biasing tools to make outdoor EL imaging truly fast and efficient. With the focus of quickly acquiring EL images in daylight, we present in this article a drone-based system capable of acquiring EL images at a frame rate of 120 frames per second. In a single second during high irradiance conditions, this system can capture enough EL and background image pairs to create an EL PV module image that has sufficient diagnostic information to identify faults associated with power loss. The final EL images shown in this work reached representative quality SNRAVG of 4.6, obtained with algorithms developed in previous works. These drone-based EL images were acquired with global horizontal solar irradiance close to one sun in the plane of the array.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.