Abstract
The transport properties of nonstoichiometric nickel ferrite nanoparticles synthesised by the co-precipitation method followed by mechanical milling is reported here. The particle size of ferrite phase in the ball milled samples is found to be ranging from ∼3.5 nm to ∼14 nm but in the un-milled sample it becomes ∼75 nm. A minimum in the conductivity has been observed in dc conductivity versus temperature variation while the activation energies of all the samples show an increasing trend with increasing milling time. The alternating current conductivity has been described by power law σ′( f, T) ∝ f s T n . The frequency exponent ‘ s’ shows anomalous behavior, while the magnitude of the temperature exponent ‘ n’ strongly depends on frequency. The dc and ac magnetoresistivities have been observed to be negative. Although the grain boundary contribution is predominated over grain contribution, the magnitude of both grain and grain boundary resistances reduce to lower value under the application of magnetic field.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have