Abstract

We explain the strong interlayer drag resistance observed at low temperatures in bilayer electron-hole systems in terms of an interplay between local electron-hole-pair condensation and disorder-induced carrier density variations. Smooth disorder drives the condensate into a granulated phase in which interlayer coherence is established only in well-separated and disconnected regions, or grains, within which the densities of electrons and holes accidentally match. The drag resistance is then dominated by Andreev-like scattering of charge carriers between layers at the grains that transfers momentum between layers. We show that this scenario can account for the observed dependence of the drag resistivity on temperature and, on average, charge imbalance between layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.