Abstract
Addition of particles to a viscoelastic suspension dramatically alters the properties of the mixture, particularly when it is sheared or otherwise processed. Shear-induced stretching of the polymers results in elastic stress that causes a substantial increase in measured viscosity with increasing shear, and an attractive interaction between particles, leading to their chaining. At even higher shear rates, the flow becomes unstable, even in the absence of particles. This instability makes it very difficult to determine the properties of a particle suspension. Here, we use a fully immersed parallel plate geometry to measure the high-shear-rate behavior of a suspension of particles in a viscoelastic fluid. We find an unexpected separation of the particles within the suspension resulting in the formation of a layer of particles in the center of the cell. Remarkably, monodisperse particles form a crystalline layer which dramatically alters the shear instability. By combining measurements of the velocity field and torque fluctuations, we show that this solid layer disrupts the flow instability and introduces a single-frequency component to the torque fluctuations that reflects a dominant velocity pattern in the flow. These results highlight the interplay between particles and a suspending viscoelastic fluid at very high shear rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.