Abstract

We demonstrate that a finite-length (10,0) carbon nanotube (CNT) with two fullerene caps, namely D5(450)-C100, is an ideal prototype to study the mechanical responses of small CNTs upon endohedral metal doping. Encapsulation of a large La2C2 cluster inside D5(450)-C100 induces a 5% axial compression of the cage, as compared with the structure of La2@D5(450)-C100. Detailed crystallographic analyses reveal quantitively the flexibility of the [10]cyclacene-sidewall segment and the rigidity of the pentagon-dominating caps for the first time. The internal C2-unit acts as a molecular spring that attracts the surrounding cage carbon atoms through strong interactions with the two moving lanthanum ions. This is the first crystallographic observation of the axial compression of CNTs caused by the internal stress, which enhances our knowledge about the structural deformation of novel carbon allotropes at the atomic level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.