Abstract

We create atom-molecule dark states in a degenerate Fermi gas of ^{6}Li in both weakly and strongly interacting regimes using two-photon Raman scattering to couple fermion pairs to bound molecular states in the ground singlet and triplet potential. Near the unitarity point in the BEC-BCS crossover regime, the atom number revival height associated with the dark state abruptly and unexpectedly decreases and remains low for magnetic fields below the Feshbach resonance center at 832.2G. With a weakly interacting Fermi gas at 0G, we perform precision dark-state spectroscopy of the least-bound vibrational levels of the lowest singlet and triplet potentials. From these spectra, we obtain binding energies of the v^{''}=9, N^{''}=0 level of the a(1^{3}Σ_{u}^{+}) potential and the v^{''}=38, N^{''}=0 level of the X(1^{1}Σ_{g}^{+}) potential with absolute uncertainty as low as 20kHz. For the triplet potential, we resolve the molecular hyperfine structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.