Abstract

The oxide thickness of anodized titanium samples has been determined through ellipsometry, reflectance spectra extrema positions and electronic imaging. The reflectance spectra extrema position technique is applicable in the case were the oxide layer is thin enough to generate an interference phenomenon inside the oxide layer. When reflected at the air/oxide and oxide/metal interfaces, the electromagnetic field undergoes a phase-shift, which is often neglected in the literature. By comparing the oxide thickness obtained through the different techniques, it is shown that this phase-shift is not negligible for thin oxide layers. The relative error on the oxide thickness is for example of about 50% for a 17 nm thick oxide layer. By studying the discrepancy observed in the literature for the titanium and oxide layer refractive indexes, which is of about 13% in the wavelength range (350–600 nm), the error induced when neglecting the electromagnetic phase-shift is higher than the error induced by the uncertainty on the refractive indexes for oxide thicknesses below about 50 nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.