Abstract
The vanadium diboride air battery (VB2-air battery) is a primary battery with the highest intrinsic anode capacity of 4060 mAh g−1 and a theoretical open circuit potential of 1.55 V. So far, the studies of the battery are particularly limited by the elusive anodic electrochemical mechanism. In this work, the following new mechanism for the charge transfer reaction of the anode is proposed: VB2+12OH-→VO2++2BOH4-+2H2O+11e-. From the possible reactions of the anode, we conclude that the surface of the VB2 is not passivated during the battery's standing and discharging processes, which is further verified by specially designed experiments. The surface density of the active substance, the direct contact area of the active substance with the electrolyte, and the hydroxide ion concentration are considered as the dominant factors of the battery's discharge voltage and discharge capacity. A series of measurements on pouch cells have been conducted to ensure the direct proportion between the evolution tendency of charge transfer reaction and the concentration of the hydroxide ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.