Abstract

The planktonic metabolic balance that is the balance between gross primary production (GPP) and community respiration (CR) was determined in Matilda Bay (estuarine) and Woodman Point (coastal) in Perth, Western Australia. The rates of net community production (NCP = GPP – CR) and the ratio between GPP and CR (P/R) were assessed to evaluate whether the metabolic balance in the two coastal locations tends to be net autotrophic (production exceeding community respiration) or net heterotrophic (respiration exceeding production). We also analyzed environmental variability by measuring temperature, salinity, and nutrients and chlorophyll a concentration. Samples were collected biweekly from March 2014 to March 2015. During the study period the metabolic rates were three times higher in Matilda Bay than in Woodman Point. The predominant metabolism was net autotrophic at both sites with P/R ratios >1 in the majority of the sampling dates. In Matilda Bay, the metabolic rates were negatively correlated with salinity denoting river dynamics influence, and positively with chlorophyll a. In Woodman Point only the GPP was positively correlated with chlorophyll a. The positive correlation between P/R ratio and GPP in Matilda Bay and the positive correlations between the metabolic rates and chlorophyll a suggest that factors controlling autotrophic processes are modulating the planktonic metabolic balance in the coastal marine ecosystem in Perth. Significant correlations were found between CR and GPP-standardized to chlorophyll a and water temperature. The net autotrophic metabolic balance indicates that in both ecosystems planktonic communities are acting as a sink of CO2 and as a source of organic matter and oxygen to the system and are able to export organic matter to other ecosystems.

Highlights

  • Plankton metabolism is a fundamental property of marine ecosystem driving the flux of gases and the transference of organic matter to the food web (Duarte, Agustí & Regaudie-de Gioux, 2011)

  • The minimum salinity was reached in late winter and spring in Matilda Bay, following river discharge, and while the pattern was less clear in Woodman Point, the lowest salinity was observed in winter and early spring (Fig. 2B)

  • Net community production was strongly correlated with chlorophyll a concentration, accounting for the much higher NCP in productive Matilda Bay compared to Woodman Point plankton communities, suggesting that the metabolic balance of plankton communities in the coast of Perth is regulated by factors controlling autotrophic processes, such as nutrient inputs, salinity regimes and temperature

Read more

Summary

Introduction

Plankton metabolism is a fundamental property of marine ecosystem driving the flux of gases and the transference of organic matter to the food web (Duarte, Agustí & Regaudie-de Gioux, 2011). Coastal plankton communities, which typically present higher metabolic rates (Duarte & Agustí, 1998), may have large deviations from metabolic balance with either excess respiration over production when the ecosystem receives large inputs of labile organic carbon (e.g., Mediterranean coastal areas, Duarte, Agustí & Vaqué, 2004; Vidussi et al, 2011) or gross primary production in excess of respiration when the ecosystem receives large inputs of dissolved inorganic nutrients (e.g., Agustí, Satta & Mura, 2004). The metabolic balance of coastal ecosystems plays an important role in determining their role as CO2 sources or sinks (Borges, 2005; Cai, 2011). Inner estuaries are believed to act as sources of CO2 to the atmosphere due to a prevalence of heterotrophic ecosystem metabolic status fueled by land-derived inputs of organic carbon whereas outer reaches of estuaries tend to be CO2 sinks (Odum & Hoskin, 1958; Odum & Wilson, 1962; Heip et al, 1995; Kemp et al, 1997; Gattuso, Frankignoulle & Wollast, 1998; Hopkinson & Smith, 2005)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call