Abstract

Dust pollution is a critical challenge in achieving green mining of open-pit coal mines. The scientific basis for dust prevention and management hinges on a thorough understanding of the long-term characteristics of dust pollution. However, analyzing the characteristics of long-term dust pollution in open-pit coal mines has always been a void in research due to the effect of the mines' geographical location and operating conditions. This research investigated the dust pollution and delved into its key production and meteorological influencing elements in a cold-region open pit coal mining. The real-time data was monitored on-site during the four seasons of the year. The characteristics of dust pollution were determined by statistical analysis. The main factors affecting the dust concentration in different seasons were calculated using the comprehensive grey correlation degree. Finally, dust pollution from the mine to the surrounding area was simulated using the Hybrid Single Particle Lagrangian Integrated Trajectory model. The results revealed that dust pollution was most serious in winter, followed by autumn, spring, and summer. The concentrations of PM10 and PM2.5 exceed the national limit. Meteorological elements that substantially impact dust concentration vary season by season. The dew point temperature in spring, the solar radiation in summer and autumn, and the boundary layer height in winter were the most important elements. Mining activities pollute the surrounding areas more in winter, followed by autumn and spring. During the winter, the pollution is concentrated in Shanxi, while in the autumn and spring, it is concentrated in Inner Mongolia. Based on the research findings, optimal mine design strategies can be devised to avoid and regulate dust in mining and neighboring areas, especially during winter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call