Abstract
We measured the gas exchange and foliar terpene concentrations and terpene emission rates of Cistus albidus throughout the seasons of two annual periods (2003 and 2005) of contrasting precipitations (900 vs. 500 mm) and in response to experimental drought in a Mediterranean forest of southern Catalonia. C. albidus showed a typical seasonal oscillation of photosynthetic rates and stomatal conductance. Maximum photosynthetic activity appeared in the spring of the first year of the study and minimum ones in both summers. Net photosynthetic rates and stomatal conductance tended to decrease with drought treatment. In the first year, Cistus albidus presented maximum values of stored terpenes in autumn and winter and minimum values in spring and summer. Average concentrations in the first year were 154 and 96 μg g−1 dry matter (d.m.) for control and drought, respectively. Average concentrations in the second year were higher, 339 and 263 μg g−1 (d.m.) for control and drought, respectively. The most abundant terpene was zingiberene, followed by aromadendrene, germacrene, (−)-α-cedrene, and sesquiphellandrene. The drought treatment tended to decrease terpene content, but not significantly. Considering all the treatments together, total terpene emissions ranged between practically 0 (spring 2003) to 9 μg g−1 (d.m.) h−1 (winter 2003). In the second year, total terpene emission rates decreased 39% in control plants, and 29% in drought plants. Significant seasonal differences in emission rates were found. Total emission rates tended to be higher in the drought treatment, especially in spring and autumn. These results help for a better understanding of the behavior of plant volatiles in Mediterranean conditions interannualy and seasonally, an issue of great interest for forest flammability and atmospheric chemistry.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have