Abstract

Ion channeling and electrical characterization techniques have been used in order to study the effects of thermal annealing on phosphorus implanted silicon wafers. A low energy thermally activated process (0.15–0.28 eV) is clearly observed after annealing at low temperature (≤500 °C). This electrical activation mechanism is found to be well described by a local relaxation model involving point defect migration. It is shown that in order to achieve a complete electrical activation of the implanted impurities, an annealing must be performed at temperatures higher than 700 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.