Abstract

In this paper, we report the evolution of silicon heterojunction solar cell properties focusing, in particular, on the indium tin oxide (ITO) layers upon consecutive thermal annealing. We find that the charge carrier density N <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">e</sub> of the ITO increases with higher thermal budget, while the carrier mobility remains constant. For the solar cells, their series resistance at the maximum power point R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">S</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">MPP</sup> first decreases due to the reduction of the ITO's sheet resistance. With further annealing, R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">S</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">MPP</sup> increases again. As all monitored R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">S</sub> components decrease, we attribute this to an increase of the contact resistance. The implied V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">OC</sub> and the implied fill factor both slightly degrade for annealing temperatures above 190 °C for our layers. This, as well as the change in Ne of the ITO, must be carefully considered when optimizing the thermal budget needed, e.g., for sputter damage or screen-printing paste curing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call