Abstract

Annealing-induced viscoelastic and electric conduction variations were traced by simultaneous measurement of resistance and dynamic modulus to carbon black (CB)-filled high-density polyethylene, polystyrene, and polypropylene at elevated temperatures. The resistance decay during annealing the melts is closely related to terminal relaxation of polymer chains and the temperature-mediated interfacial tension between CB and the matrix. On the other hand, a time–temperature–concentration superposition principle was disclosed to evolution of dynamic modulus for the filled melts at different temperatures and CB volume fractions. Annealing the filled melts causes a liquid-to-solid-like transition and the differences in kinetic constant for evolution of dynamic modulus among the three systems at the same condition are involved in interfacial tension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call